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Stability analysis of „1¿1…-dimensional cnoidal waves in media with cubic nonlinearity
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In the present paper we perform stability analysis of stationary (111)-dimensional cnoidal waves of cn and
dn types~anomalous group velocity dispersion! and sn type~normal group velocity dispersion!. The math-
ematical model is based on the nonlinear Schro¨dinger equation. With this aim we developed a method that
takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We
show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are
unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when
waves evolve into a set of well-separated fundamental bright solitons.
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I. INTRODUCTION

The analysis of stability of solitary waves in the frames
various physical models is one of the most interesting
important problems of modern nonlinear optics. Start
from the pioneering paper of Vakhitov and Kolokolov~VK !
@1# that was devoted to the derivation of a simple analyti
stability criterion~the VK criterion! for (211)-dimensional
single solitons in focusing saturable media, a number of
pers were devoted to the investigation of stability of
11)-dimensional multicomponent solitary waves in cub
and saturable media, surface and guided waves, waves i
media with quadratic and competing nonlinearities, etc. T
concept of reading of dispersion or Hamiltonian-energy~for
Hamiltonian systems! diagrams proved to be especially us
ful. This concept enables one to make a conclusion ab
soliton stability directly from dependencies of soliton ener
on the propagation constant~or Hamiltonian! without further
special analysis@2#. It was shown that the VK stability cri-
terion remains valid in several simplest physical models
(111) dimensions, such as models describing surface wa
at the interface between a linear dielectric and a cubic
dium @3–8#, surface waves at the interface between a die
tric and a photorefractive crystal with drift and diffusio
nonlinearity @9,10#, fundamental soliton states in unidire
tional fiber couplers@11,12#, birefringent optical fibers@13–
16#, and type I quadratic solitons@17#. However, for a variety
of solitary waves such as multicomponent waves with nu
ber of components greater than two@18#; walking vector
@19,20#; type II quadratic@21#; walking quadratic@22# soli-
tary waves; dark, gray, and cubic gap solitons@23# the sta-
bility criterion can be more complicated than the usual V
criterion or even no evident analytical criterion can exi
Note that papers@2–23# are connected with the investigatio
of stability of localized (111)-dimensional solitary waves

Recently, a wide class of multicomponent periodical s
lutions of the (111)-dimensional nonlinear Schro¨dinger
equation in the form of cnoidal waves has gained ste
attention@24–27#. The concept of periodical solutions of th
1063-651X/2003/67~3!/036613~11!/$20.00 67 0366
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nonlinear Schro¨dinger equation is especially attractive fro
the theoretical point of view because it enables to analyze
propagation dynamics of solitary waves for the cases of
ferent localization of the wave field energy. Cnoidal wav
describe periodic arrays of the slit laser beams@28–30#,
trains of optical pulses in fibers@31–34#, and electron wave
functions in Bose-Einstein condensates@35,36#. Recently,
spatial cnoidal waves were observed experimentally in p
torefractive crystals in the steady state regime@30#. One of
the most important features of the cnoidal waves is tha
the limit of the strong localization they transform into th
well-known dark@37# and bright@38# solitons. The latter fact
enables to treat cnoidal waves as more general objects
usual localized bright and dark solitons and to analyze
main features of propagation and interaction of pulse tra
and beam arrays from the unified point of view.

One of the most interesting problems connected w
cnoidal waves is the problem of their stability. Note th
upon the analysis of stability of the cnoidal waves one me
serious difficulties connected with nonzero asymptotics
light fields and oscillating character of cnoidal waves. R
cently, stability of specific (111)-dimensional ‘‘cnoidal
waves on a ring’’ with respect to stochastic perturbations
input profiles was investigated numerically in Bose-Einst
condensates@35#. At the present moment, stability of cnoida
waves was considered analytically only with respect to
rather narrow class of long-wavelength perturbations@39–
43# ~the method of stability analysis in approximation
long-wavelength perturbations was first developed in Re
@44,45#!. This approach enables to treat perturbations o
with small growth rates~increments!, whereas it is com-
monly known that only perturbations with highest incr
ments survive upon wave propagation@46#. Note also that
approaches used in papers@39–42# lead to contradictory
conclusions about the stability of cnoidal waves. There
still no self-consistent approach to investigate the stability
(111)- and (211)-dimensional cnoidal waves for the ca
of arbitrary perturbation wavelengths.

In the present paper we perform accurate linear stab
©2003 The American Physical Society13-1
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analysis of (111)-dimensional periodical cnoidal waves
optical fibers in the anomalous~waves of cn- and dn-types!
and normal~wave of sn-type! dispersion regimes. We deve
oped a method of solution of linearized equation for pert
bation vector that is based on the construction of transla
matrix for perturbation vector and the analysis of evoluti
of eigenvalues of this matrix with changes in the parame
of corresponding perturbed cnoidal waves. This approac
semianalytical: computer is used only for multiple calcu
tions of trace of translation matrix. Results of the translat
matrix approach are confirmed by direct numerical simu
tion of perturbed waves propagation. Our approach is f
from the restrictive assumption of long wavelengths of p
turbations and can be easily generalized to the cases o
11)-dimensional cnoidal waves, multicomponent wav
and cnoidal waves in saturable optical media.

II. THEORETICAL MODEL

The propagation of optical pulses in the direction of lo
gitudinal z axis in optical fibers is described by the dime
sionless nonlinear Schro¨dinger equation for the comple
field amplitudeq(h,j),

i
]q

]j
5

d

2

]2q

]h22uqu2q. ~1!

Here amplitude q(h,j)5(Ldis/Lspm)1/2A(h,j)I 0
21/2;

A(h,j) is the slowly varying envelope of light field;I 0 is the
input intensity;h5(t2z/vgr)/t0 is the normalized running
time; t0 is the characteristic pulse duration;vgr

5(]k/]v)v5v0

21 is the group velocity;j5z/Ldis is the nor-

malized propagation distance;Ldis5t0
2/ub2u is the dispersion

length, corresponding to the chosen pulse durationt0 ; b2
5(]2k/]v2)v5v0

; k05k(v0) is the wave number;v0 is the

carrying frequency;Lspm52c/(v0n2I 0) is the self-phase
modulation length; andn253pv0x (3)(v0)/@k(v0)c# is the
nonlinear coefficient that is proportional to the Fourier tra
form x (3)(v0) of the corresponding element of nonline
susceptibility tensor. The first term in Eq.~1! describes the
dispersion spreading and the second one accounts for
focusing of optical pulse in the fiber. Parameterd521 cor-
responds to the anomalous dispersion regime, wheread
51 corresponds to the normal dispersion regime.

Note that the distribution of the wave field on transve
coordinates in optical fibers is defined by the profiles of
guided modes. Hence the problem of stability of the cnoi
waves in optical fibers can be treated in (111) dimensions.
In the spatial case, Eq.~1! should be modified to include th
derivatives with respect to two transverse coordinates. In
case a number of new effects come into play. Among th
effects are transverse necklike and snakelike instabilities@46#
that can develop along one of transverse axes even if
wave is stable in the frames of (111)-dimensional mode
described by Eq.~1! ~which is valid also for slit laser beams!.
The analysis of stability for (211)-dimensional cnoida
waves~which are uniform, say, along they axis and periodic
along thex axis! is much more complicated than that fo
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(111)-dimensional waves. We leave this problem for futu
consideration. Note that the method presented here ca
easily modified in the case of (211)-dimensional cnoidal
waves.

Equation~1! has two stationary periodic wave solutions
the anomalous dispersion regime (d521) @24,25# ~here we
consider only fundamental periodic solutions of nonline
Schrödinger equation!:

qdn~h,j!5xdn@x~h2h02aj!,m#

3exp@ iah1 i jx2~12m2/2!2~ i /2!a2j1 ic0#,

qcn~h,j!5mxcn@x~h2h02aj!,m#

3exp@ iah1 i jx2~m221/2!2~ i /2!a2j1 ic0#,

~2!

and one stationary periodic wave solution in the normal d
persion regime (d51):

qsn~h,j!5mxsn@x~h2h02aj!,m#

3exp@2 iah1 i jx2~11m2!/21~ i /2!a2j

1 ic0#. ~3!

In expressions~2!, ~3! cn(h,m), dn(h,m), and sn(h,m) are
elliptic functions; 0<m<1 is the modulus of the elliptic
function that can be treated as a parameter describing
degree of localization of the wave field energy;x is the ar-
bitrary form factor;h0 is the initial coordinate shift;a is the
angle between the propagation direction and the longitud
j axis ~initial frequency shift!; c0 is the initial phase. Note
that for the case ofa, h0 , c050 cnoidal waves~2! and ~3!
can be written in the general formq(h,j)5w(h)exp(ibj),
with w(h) being the real function that describes the wa
profile, andb being the real propagation constant. We w
use the general expressionq(h,j)5w(h)exp(ibj) ~with a,
h0 , c050) for cnoidal wave fields in the following sectio
that is devoted to stability analysis. Besides the latter so
tion, Eq. ~1! has a solution in the form of intrinsically com
plex or ‘‘chirped’’ cnoidal waves q(h,j)
5w(h)exp@if(h)j#, wheref~h! is the real function of trans-
verse coordinateh. Such waves are not considered in t
present paper.

Functions cn(h,m) and sn(h,m) in expressions~2! and
~3! have a sign-alternating oscillating character; functi
dn(h,m) is always positive and has the form of oscillatio
superimposed on the constant background. Period of cn
sn-waves equals to 4K(m)/x, whereK(m) is the elliptical
integral of the first kind, whereas period of dn-wave equ
to 2K(m)/x. The role of parameterm ~in the following we
will call it the localization parameter! can be easily inter-
preted for cn- and sn-waves. Whenm→0 wave amplitudes
go to zero, provided that the nonlinear terms in Schro¨dinger
equation~1! can be neglected. In this linear limiting cas
function cn(h,m) is well approximated by cosh, and func-
tion sn(h,m) by sinh with periods equal to 2p. This is the
case of a weak localization. With increase ofm up to 1 the
contribution of nonlinear terms in Eq.~1! increases, wave
3-2
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STABILITY ANALYSIS OF (111)-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 036613 ~2003!
periods go to infinity, and waves are transformed into a se
hyperbolic secant type solitons for cn-wave and hyperb
tangent type solitons for sn-wave. This is the case of str
localization. dn-wave form→0 transforms into a wave o
constant amplitude and form→1 into a set of hyperbolic
secant type solitons, similarly to the case of cn-wave. Thu
a, h0 , c050, one can write the following asymptotic expa
sions for functions in expressions~2! and ~3!:

qdn~h,j!um→05x exp~ ix2j!,

qdn~h,j!um→15x sech~xh!exp~ ix2j/2!,

qcn~h,j!um→05mx cos~xh!exp~2 ix2j/2!,

qcn~h,j!um→15x sech~xh!exp~ ix2j/2!,

qsn~h,j!um→05mx sin~xh!exp~ ix2j/2!,

qsn~h,j!um→15x tanh~xh!exp~ ix2j!. ~4!

Such properties of the cnoidal waves of cn-, sn-, and
types give one several intuitive hints about their stability. F
example, one can suspect the instability of dn-wave, sinc
contains constant background that is modulationally unsta
in the anomalous dispersion regime. Moreover, since in
limit of strong localization cnoidal waves are transform
into bright and dark solitons, instability~if it presents! should
be suppressed for all types of cnoidal waves. Furt
throughout this paper we consider the casex51, since it is
known that the solutions of Eq.~1! can be rescaled to an
positive value ofx.

III. METHOD OF STABILITY ANALYSIS

To investigate the stability of periodic cnoidal waves w
employ the well-known linear stability analysis that is va
~at least for exponentially growing perturbations! only at the
initial stage of perturbation development. Note that ear
linear stability analysis was used mostly for fundamen
soliton states@1–23#, since there exists a common belief th
for higher-order soliton states~having one or more nodes!
the linear stability analysis enables to treat only very narr
class of perturbations that should go to zero in the no
~zeros! of the higher-order solitons state. Upon considerat
of the stability of periodical cnoidal waves one meets t
difficulty from the very beginning, since waves of cn- an
sn-types periodically change their signs and have unlim
number of nodes. We show that our analysis enables to
simultaneously perturbations that conform to the requirem
of common zeros with corresponding cnoidal wave and p
turbations that are nonzero in the wave nodes. Note also
the usual procedure of derivation of the VK stability criterio
is inapplicable for the periodic cnoidal waves due to nonz
asymptotics of the wave field at infinity@2#. We will search
for solutions of Eq.~1! that describe the propagation of th
cnoidal wave with perturbed input profile in the followin
form:

q~h,j!5@w~h!1U~h,j!1 iV~h,j!#exp~ ibj!, ~5!
03661
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where functionw(h)exp(ibj) describes the evolution of th
corresponding unperturbed wave as it was stated in the
ceding section, functionsU(h,j) and V(h,j) are, respec-
tively, the real and imaginary parts of the small (U,V!w)
perturbation. For example, in the case of sn-wave~3! with a,
h0 , c050 andx51 ~these parameter values will be use
further in the paper! one hasw(h)5msn(h,m) and b5(1
1m2)/2. For perturbations that are nonzero in the cnoi
wave nodes~for cn- and sn-waves!, inequality U, V!w
breaks down only in the small areas around zeros of
cnoidal waves. For the wave of dn-type such difficulty do
not arise because dn-wave is not equal to zero. Substitu
of expression~5! into Schrödinger equation~1!, subsequent
linearization, and the derivation of the real and imagina
parts yields the following system of linear equations:

]U

]j
52LV,

]V

]j
5RU. ~6!

Here the linear operatorsL52(d/2)(]2/]h2)1w2(h)2b
andR5L12w2(h) are both self-adjoint and depend on th
transverse coordinateh, parameterd, and localization param-
eterm. The following propertiesLw50, R(dw/dh)50, and
R(dw/db)5w can be easily verified by the direct substit
tion of functionsw, dw/dh, anddw/db into the expressions
for operatorsL andR.

We will search for solutions of system~6! in the following
form:

U~h,j!5ReF E C~d!u~h,d!exp~dj!dd G ,
V~h,j!5ReF E C~d!v~h,d!exp~dj!dd G , ~7!

whered is the complex increment~growth rate! of perturba-
tion; C(d) are arbitrary complex constants;u(h,d) and
v(h,d) are complex functions that describe the input profi
of the perturbation and depend also on the increment va
Integration goes over all possible increment values. Un
the substitution of expressions~7! into linear system~6! and
the equation of underintegral terms with the same expon
tial coefficients exp(dj), one can get the following final sys
tem of linear equations with real linear operatorsL andR:

du52Lv,

dv5Ru. ~8!

Taking into account expressions for operatorsL andR, one
can rewrite the system of equations~8! in matrix form that is
more convenient for subsequent analysis:

dF

dh
5BF, B5S O E

N OD ,
3-3
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N5S ~6w222b!/d 22d/d

2d/d ~2w222b!/dD , ~9!

whereF5$u,v,du/dh,dv/dh%T is the solution vector;O is
the 232 zero matrix;E is the 232 unity matrix; and only
matrix N depends on the transverse coordinateh, increment
d, and parametersd and m. As one can see from Eq.~9!,
matrix B~h! can be presented in the form of Jordan’s bloc
One of the most important properties of the matrixB is that
Tr(B)50. The general solution of Eq.~9! can be written in
the form

F~h!5J~h,h8!F~h8!, ~10!

whereJ(h,h8) is the 434 Cauchy matrix that can be foun
as a solution of the initial value problem]J(h,h8)/]h
5B(h)J(h,h8), J(h8,h8)5E, where coordinateh8 serves
as a parameter. It is known thatJ(h,h8)J(h8,h9)
5J(h,h9) and J(h8,h)5J21(h,h8). Direct substitution
shows that two matricesB~h! andB(h8) are not commuta-
tive, and, hence, the general expression for Cauchy ma
can only be written in the form of ‘‘matrizant,’’

J~h,h8!5E1 (
k51

` E
h8

h
dh1E

h8

h1
dh2¯E

h8

hk21
dhkB~h1!

3B~h2!¯B~hk!. ~11!

From expression Tr(B)50 it follows that the determinant o
the matrixJ(h,h8) @which is the solution of the equatio
]J(h,h8)/]h5B(h)J(h,h8)] is equal to unity for arbi-
trary values of coordinatesh and h8. This important prop-
erty will be used upon the analysis of Eq.~9!. Further, one
can take into account thatw(h) describing the cnoidal wave
profile is the periodic function of coordinateh, i.e., w(h
1T)5w(h), whereT is the wave period. This means th
matricesB(h1T)5B(h) andJ(h1T,h81T)5J(h,h8).

Let us define the matrix of ‘‘translation’’ of perturbatio
vectorF on one periodT,

P~h!5J~h1T,h!, ~12!

and consider its properties. It follows from the definition
the matrix of translation that det@P(h)#51 and J(h
1kT,h)5Pk(h), wherek is an integer. Using the propertie
of the matrixJ(h,h8), one can show that

Pk~h1h0!5J~h1h0 ,h!Pk~h!J21~h1h0 ,h! ~13!

for arbitrary values ofh0 and k. Characteristic polynom o
translation matrix D(l)5det@P(h)2lE# and trace
Tr@Pk(h)# do not depend on coordinateh. Note that if ln
(n51,...,4) are roots of the characteristic polynom, th
det@P(h)#5l1l2l3l4 and Tr@P(h)#5l11l21l31l4 .
Since det@P(h)#51, all rootslnÞ0. Characteristic polynom
of the matrix of translation can be written in the followin
general form:

D~l!5l41p1l31p2l21p3l1p4 . ~14!
03661
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Matrix P~h! satisfies its own characteristic equationD(P)
5P41p1P31p2P21p3P1p4E5O. It also follows from
equality det@P(h)#51 that coefficientp451. It is well
known that coefficientspk in expression~14! are connected
with tracesTk5Tr@Pk(h)# by the following relations~New-
ton’s formulas!:

Tk1p1Tk211¯1pk21T152kpk ~k51,...,4!, ~15!

whereTk andpk are independent of the transverse coordin
h, as it was shown above.

Using expression~11! for Cauchy matrixJ(h,h8), one
can easily show that Tr@J(h,h8)#5Tr@J21(h,h8)# for ar-
bitrary values ofh and h8 ~see Appendix A for details!.
Since J(h,h8)5J21(h8,h), it follows from the previous
expression that equality Tr@Pk(h)#5Tr@P2k(h)# and,
hence, equalityTk5T2k hold for all values ofk, wherek is
an integer. Multiplying equationD(P)5O with P2k, where
k51,...,4, and calculating traces of the left and right parts
resulting equations, we get four expressions@additionally to
expressions~15!# connecting parameterspk andTk . Result-
ing system of eight equations~see Appendix B! for pk and
Tk , together withp451, is consistent only when

p152T1 ,

p252 1
2 ~T22T1

2!,

p352T1 ,

p451. ~16!

TracesT35T1(313T2/22T1
2/2) and T454(T1

221)1T2
2/2

1T1
2T22T1

4/2 are also expressible through lowest-ord
tracesT1 and T2 . Characteristic polynom of the translatio
matrix ~14! and its roots take finally very simple form:

D~l!5l42T1l32 1
2 ~T22T1

2!l22T1l11,

l15 1
4 @T11~2T22T1

218!1/2#

1$ 1
16 @T11~2T22T1

218!1/2#221%1/2,

l25 1
4 @T12~2T22T1

218!1/2#

1$ 1
16 @T12~2T22T1

218!1/2#221%1/2,

l351/l1 ,

l451/l2 . ~17!

Expressions ~17! give us nonzero eigenvaluesln (n
51,...,4) of the matrix of translationP~h!. Eigenvectors
Fn(h) corresponding to the eigenvaluesln can be found as
solutions of the linear problemsP(h)Fn(h)5lnFn(h).
Note that eigenvectors of the matrixJ(h1kT,h)5Pk(h) of
translation onk periods coincide with eigenvectorsFn(h) of
the matrixP~h!, whereas its eigenvalues are given byl1

k ,
l2

k , l3
k , l4

k .
3-4
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Let us consider two distinct situations when all eigenv
uesln of the matrixP~h! of translation on one period ar
different and when repeated eigenvalues are possible. S
eigenvectors of the matrixJ(h1kT,h) coincide with eigen-
vectorsFn(h) of matrix P~h!, vectorF~h! that is the solu-
tion of Eq. ~9! and that satisfies expression~10! can be
uniquely expressed through the eigenvectors of matrixP~h!:

F~h!5 (
n51

4

CnFn~h!, ~18!

because in the case of distinct eigenvaluesln eigenvectors
Fn(h) form basis in the vector space where Cauchy ma
J(h,h8) acts. In expression~18! Cn are the arbitrary com-
plex coefficients. Applying the matrix of translation onk
periods to the vector~18!, one obtains

F~h1kT!5J~h1kT,h!F~h!5 (
n51

4

Cnln
kFn~h!.

~19!

Expression~19! gives one an obvious criterion of searchin
of perturbation vectorsF~h! that remain limited for arbitrary
value of transverse coordinateh. According to this criterion,
upon construction of arbitrary perturbation vectors o
should choose in expansion~18! only eigenvectorsFn(h)
that correspond toulnu51. Inclusion into expression~18!
eigenvectorsFn(h) with ulnuÞ1 leads in accordance wit
Eq. ~19! to unlimited increase of the perturbation amplitu
at h→6`.

The situation is more complicated in the case of repea
eigenvalues of matrixP~h!, because eigenvectorsFn(h) in
general case cannot serve as a basis in vector space w
matrix J(h,h8) acts. In the case of repeated eigenvalu
characteristic polynom~14! takes the following form:

D~l!5 )
n51

r

~l2ln!mn, (
n51

r

mn54, ~20!

where 1<r<4 is the number of distinct eigenvalues,mn is
the multiplicity of eigenvalueln . Using expression~20! and
substituting in polynomD(l) the matrix of translationP~h!
instead ofl, one can show that the vector spaceS where
matrix J(h,h8) acts can be decomposed into a direct sum
subspacesS1 ,...,Sr , where subspaceSn consists of vectors
satisfying the condition

@P~h!2lnE#mnFn~h!5O. ~21!

HereE is the 434 unity matrix andO is a 431 zero vector.
Arbitrary perturbation vectorF~h! that belongs to vecto
spaceS can, therefore, be expressed as a sum of vec
Fn(h) belonging to subspacesSn ,

F~h!5 (
n51

r

Fn~h!, ~22!

where all Fn(h) satisfy conditions~21!. Note that in the
right part of expansion~22! one can use vectorsCnFn(h)
03661
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with arbitrary complex coefficientsCn instead ofFn(h).
Applying to vector~22! the matrix of translation onk periods
J(h1kT,h), after some simple algebra we arrive at a fo
mula

F~h1kT!5J~h1kT,h!F~h!

5 (
n51

r

ln
k (

m50

k

Ck
mln

2m@P~h!2lnE#mFn~h!.

~23!

Here Ck
m5k!/m!(k2m)! are the binomial coefficients an

we suppose thatk.0. Note that fork>4 summation onm in
Eq. ~23! can be carried out from 0 up tomn since @P(h)
2lnE#mFn(h)5O for m.mn in accordance with expres
sion ~21!. An analogous expression can be easily obtain
for k,0. It follows from Eq.~23! that similarly to the case o
distinct eigenvaluesln of matrixP~h! in the case of repeate
eigenvalues perturbation vectorF~h! remains limited when
one uses in formula~22! only such vectorsFn(h) that cor-
respond toulnu51 and satisfy conditions~21!. Note also that
binomial coefficientCk

m in Eq. ~23! remains limited with
increase ofk only for m50 and m5k. This fact put the
additional~except requirementulnu51) condition

P~h!Fn~h!5lnFn~h! ~24!

on the vectorsFn(h) in Eq. ~23! that is more general than
Eq. ~21! and coincides with condition defining eigenvecto
and eigenvalues of the matrix of translationP~h!.

Thus for both cases of distinct and repeated eigenva
of translation matrix, perturbation vector can be obtained
an expansion on the eigenvectors of translation matrix

F~h!5 (
n51,

ulnu51

r

CnFn~h!, ~25!

where 1<r<4 is the number of distinct eigenvalues an
summation goes over eigenvalues withulnu51.

Searching for the profiles of perturbation vectors cor
sponding to the various cnoidal waves, localization para
etersm and incrementsd, we first constructed matrixB, and
then calculated matricesJ(h,h8) andP~h! numerically. Af-
ter that eigenvalues of the matrixP~h! conforming to the
condition ulnu51 were found and eigenvectorsFn(h) were
built.

To search the areas on the complexd plane where one of
the conditionsulnu51 is satisfied, we fixedudu and scanned
arg(d) with the fine step~typically ;2p/1000!. Then scan-
ning procedure was repeated for a slightly increased valu
udu ~step;0.001!; the segment ofudu scanning was@0,100#.
For purely real or imaginary incrementsuln(d)u may be
equal to unity in the points where arg(d)50 or arg(d)5p/2,
correspondingly. To find the point in whichuln(d)u goes to
unity in the case of complex incrementsd we arranged one-
dimensional search along arg(d) axis. In all practical cases
dependenceuln(d)u on arg(d) has a single well-defined
maximum, corresponding to conditionulnu51.
3-5
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Careful numerical analysis shows that for mixed inc
mentsd with Re(d)Im(d)Þ0 conditionsulnu51 are satisfied
only in the case of cn-wave for small values ofudu. For the
waves of sn and dn-types conditionsulnu51 are satisfied
only for purely real or purely imaginary increments. Mor
over, in contradiction with the case of localized fundamen
soliton pulses in the case of periodic cnoidal waves, the sp
trum of possible increment values is continuous, i.e.,
fixed localization parameterm there exists unlimited numbe
of perturbations corresponding to different increments. F
ther throughout this paper we consider perturbations co
sponding to eigenvaluesl1 andl2 from formula ~17! since
from ul1u51 it follows that ul3u51 and from ul2u51 it
follows thatul4u51. Moreover, profiles of perturbations co
responding to eigenvaluesl3,4 can be easily found from
known profiles of perturbations for eigenvaluesl1,2 if one
take into account the following relations:un(h)
5un12(2h) andvn(h)5vn12(2h), wheren51,2.

IV. RESULTS AND DISCUSSION

First we concentrate on the case of dn-wave described
the first of expressions~2!. Figure 1~a! shows the areas o
existence of limited perturbations@areas at the plane (m,d)
where at least one of eigenvalues conforms to the requ
ment ulnu51] for dn-wave in the case of purely real incr
ment d. One can see from the figure that in the area be
the line with circles@this line is very well described by th
equation Re2(d)1m251] both ul1,2u51. This fact means tha
dn-wave isunstablein the whole range of its existence. In
stability can be associated with the presence of the cons

FIG. 1. ~a! Areas of existence of limited perturbations for d
wave in the case of purely real incrementd. In the area below the
line with circles bothul1u51 and ul2u51. In the area above the
line with circles bothul1uÞ1 andul2uÞ1. ~b! shows the profile of
dn-wave form50.95. Row ~c! shows the profile of perturbation
corresponding to increment Re(d)50.283 22 and localization pa
rameterm50.95. Row~d! shows the profile of perturbation corre
sponding to Re(d)50.083 41 andm50.95.
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background in dn-wave that is modulationally unstable in
anomalous dispersion regime. However, with increase of
localization parameterm up to unity when dn-wave is trans
formed into the set of well-separated bright solitons and c
stant background vanishes, the width of instability area alo
d axis decreases. Form51 dn-wave becomes stable, whic
is in consistence with the well-known stability of isolate
(111)-dimensional solitons in the cubic media. Figure 1~b!
shows the typical profile of dn-wave, whereas Figs. 1~c! and
1~d! show profiles of perturbations corresponding to th
wave, eigenvaluel2 , and two different increment values. A
perturbations are presented in a normalized form for con
nience. Since the spectrum of possible increment value
continuous, it is possible to find perturbations with vario
periods. The most interesting are the perturbations with
riods that are divisible by period of the cnoidal wave. P
turbation with period that is two times bigger then the peri
of dn-wave is shown in Fig. 1~c! and it has the minimal
possible period. Period of perturbation from Fig. 1~d! is eight
times higher than the wave period. Two characteristic sca
are clearly seen from this figure: one is equal to the per
bation period, whereas second equals the period of dn-w

Figure 2~a! shows the areas of existence of limited pertu
bations for dn-wave in the case of purely imaginary inc
mentd. In this figureul1uÞ1 everywhere, whereasul2u51
in the area above the line with circles@this line is very well
described by the equation Im(d)5m2/2]. Perturbation shown
in Fig. 2~b! has the same period as the dn-wave. Once ag
two characteristic scales are clearly visible; however, n
period of dn-wave defines the highest of these two sca
Note that whenm→0 the profiles of perturbation are ver
well described by harmonic functions.

Results obtained with the aid of linear stability analys
are confirmed by the results of direct numerical integrat
of Eq. ~1! by split-step Fourier method. Initial condition
were set in the form~5! with U(h,j50) and V(h,j50)
being the small perturbations of the input wave that
found from Eqs.~7!–~9!. Figure 3~a! shows the evolution of
the perturbationudq(h,j)u with propagation in the case o

FIG. 2. ~a! Areas of existence of limited perturbations for d
wave in the case of purely imaginary incrementd. In ~a! ul1uÞ1
everywhere, whereasul2u51 in the area above the line with circles
Row ~b! shows the profile of perturbation corresponding to inc
ment Im(d)52.6244 and localization parameterm50.95.
3-6
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purely real incrementd. Perturbationudq(h,j)u grows expo-
nentially upon propagation. Two-dimensional plots show
dependence of amplitudedq05udq(h50,j)u of perturbation
on the distancej. Figure 3~b! shows the evolution of pertur
bation corresponding to purely imaginary incrementd. Per-
turbation periodically restores its input profile and ‘‘drifts
along the dn-wave in the process of propagation. As one
see from the two-dimensional plot in row~b! frequency of
oscillations ofdq0(j) is exactly two times higher than th
actual increment valued. This discrepancy is connected wit
the procedure of modulus calculation for the complex fi
dq(h,j).

Note that in the limiting case ofudu→0, when perturba-
tion period greatly exceeds the period of corresponding
wave, our results are in excellent agreement with the res
of papers@39,42# devoted to the analysis of stability of cno
dal waves in the approximation of long-wavelength pert
bations.

Next we concentrate on the analysis of stability of c
wave. In the case of cn-wave conditionulnu51 is satisfied
for purely imaginary increments and for complex increme
with nonzero real and imaginary parts. Complex increme
corresponding toulnu51 can be found for all values of lo
calization parameter except the limiting case whenm51.
Thus one can conclude that cn-wave isunstablein the whole
domain of its existence.

Areas of existence of limited perturbations for cn-wave
the case of purely imaginary increments are shown in F
4~a!. Here ul1u51 in the area between the horizontal lin

FIG. 3. Row~a! shows the initial stage of evolution of pertu
bation of dn-wave depicted in row~c! of Fig. 1 and corresponding
to the real increment Re(d)50.283 22. Row~b! shows the evolution
of perturbation of dn-wave depicted in row~b! of Fig. 2 and corre-
sponding to the imaginary increment Im(d)52.6244. Localization
parameterm50.95. Two-dimensional plots show the dependence
perturbation amplitude on the propagation distance.
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d51/2 and the line with circles. The latter line ends at t
point wherem5221/2. ul2u51 everywhere in the area abov
the horizontal lined51/2 and the line with circles. Figure
4~b! shows the typical profile of cn-wave. As it was me
tioned above upon consideration of the stability of waves
cn- and sn-types, one faces the difficulty connected with
justification of the applicability of linearization procedur
around the wave nodes. Analysis shows that perturba
componentsun(h) andvn(h) calculated for cn-wave in ac
cordance with the procedure described above arealways
nonzero in the wave nodes. However, it follows from expr
sion ~25! that linear combination of eigenvectors can also
treated as a perturbation instead of single eigenvectorFn(h)
that was used in the case of dn-wave. Taking into account
symmetry properties un(h)5un12(2h) and vn(h)
5vn12(2h), wheren51, 2, we used for the further analy
sis vector combinations S1(h)5@F1(h)1F3(h)#/2,
S2(h)5@F2(h)1F4(h)#/2, A1(h)5 i @F1(h)2F3(h)#/2,
and A2(h)5 i @F2(h)2F4(h)#/2. These vector combina
tions have components:

S1 , s15~u11u3!/2, s25~v11v3!/2,

S2 , s35~u21u4!/2, s45~v21v4!/2,
~26!

A1 , a15 i ~u12u3!/2, a25 i ~v12v3!/2,

A2 , a35 i ~u22u4!/2, a45 i ~v22v4!/2.

f

FIG. 4. ~a! Areas of existence of limited perturbations for c
wave in the case of purely imaginary incrementd. ul1u51 in the
area between the horizontal line and the line with circles.ul2u51 in
the area above the horizontal line and the line with circles.~b!
shows the profile of cn-wave form50.95. Row~c! shows the pro-
file of perturbation obtained from the linear combination for Im(d)
51.3967. Row~d! shows the profile of perturbation that was us
for the construction of perturbation depicted in row~c!. Parameter
m50.95 for rows~c! and ~d!.
3-7
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One of the advantages of using such combinations is
usually one of the real or imaginary parts of functionssn(h),
an(h) goes to zero. Figure 4~c! shows the perturbation pro
file for vector combinationS2(h) @with componentss3(h)
and s4(h)], cn-wave depicted in Fig. 4~b!, and eigenvalue
l2521. Only nonzero perturbation components are p
sented. One can see from the figure that functionss3,4(h) are
zero in the nodes of corresponding cn-wave. This is
method of construction of perturbations that formally sati
linearization procedure in the case of cn- and sn-waves
arbitrary values of coordinateh. Finally, Fig. 4~d! shows the
componentsu2(h), v2(h) of vector F2(h) that were used
for the construction of vectorS2(h) having components de
picted in Fig. 4~c!.

The case of cn-wave is unique in the sense that only
such waves one can find perturbations corresponding to c
plex increments with Re(d)Im(d)Þ0. Numerical analysis
shows that at fixed localization parameterm, all possible
increments lie on the certain curve at the@Re(d),Im(d)# plane
~see Fig. 5!. Note that left parts of the curves in Fig. 5~be-
fore points marked by circles! correspond toul1u51, ul2u
Þ1, whereas right parts correspond toul2u51, ul1uÞ1. One
can see that conditionsulnu51 are satisfied only for rela
tively small udu. Instability of cn-wave is suppressed in tw
limiting cases whenm→0 andm→1. Typical profile of per-
turbation corresponding to mixed incrementd and vector
combinationS1(h) is also shown in Fig. 5.

Results of the numerical integration of Eq.~1! confirm the
predictions of analytical approach. Figure 6~a! shows the
evolution of perturbationS2(h) depicted in Fig. 4~c! upon

FIG. 5. Upper plot shows curves at the plane of complex inc
ments where one of the conditionsul1,2u51 is satisfied for cn-wave
For the left parts of these curves~before points marked by circles!
ul1u51, ul2uÞ1, whereas right parts of these curves~after points
marked by circles! correspond toul2u51, ul1uÞ1. Four lower plots
show the profile of perturbation corresponding to incremend
50.075 1510.223 58i and cn-wave withm50.95.
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m-propagation. For comparison, in Fig. 6~b! we presented the
evolution of perturbationF2(h) with componentsu2(h),
v2(h) that are nonzero in the wave nodes@see Fig. 4~d!# and
that were used for the construction ofS2(h). Note that per-
turbationF2(h) ‘‘drifts’’ along the cn-wave, whereasS2(h)
‘‘follows’’ the cnoidal wave upon propagation. Moreover, d
spite the fact that formally linearization is inapplicable f
F2(h) in the wave nodes, numerical simulation gives ab
lutely identical results forF2(h) and S2(h). This conclu-
sion holds for all values of localization parameterm and
incrementd. Therefore, one can make important conclusi
that linearization techniquecan be usedfor waves and
higher-order solitons with nodes. Figure 6~c! shows the evo-
lution of perturbationS1(h) of cn-wave depicted in Fig. 5
and corresponding to complex incrementd. One can clearly

-

FIG. 6. Row~a! shows the evolution of perturbation of cn-wav
depicted in row~c! of Fig. 4 and corresponding to the imagina
increment Im(d)51.3967. Row~b! shows the evolution of pertur
bation of cn-wave depicted in row~d! of Fig. 4 and corresponding
to the same increment value. Evolution of perturbation that is p
ted in Fig. 5 ford50.075 1510.223 58i is presented in row~c!.
Localization parameterm50.95. Two-dimensional plots show th
dependence of perturbation amplitude on the propagation dista
3-8
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see the exponentially growing oscillations of perturbat
amplitude.

Areas of existence of limited perturbations for the case
sn-wave are presented in Fig. 7~a!. For real and mixed incre
mentsd there are no eigenvalues conforming to the con
tions ulnu51. This means that sn-wave isstablein the whole
domain of its existence. It is interesting that nowul2u51 in
the whole plane (m,d), whereasul1u51 in the area lying
below the line with circles@this line is well described by the
equation Im(d)5(12m2)/2]. Typical profile of sn-wave is
shown in Fig. 7~b! whereas characteristic perturbation pr
files are depicted in Fig. 7~c! @perturbation corresponding t
vector combinationA2(h)] and Fig. 7~d!. Evolution of per-
turbation presented in Fig. 7~c! is shown in Fig. 8~a!,
whereas Fig. 8~b! illustrates the evolution of perturbatio
F2(h) that was used for the construction ofA2(h). In the
case of sn-wave we once again got the confirmation of
applicability of linearization technique for the analysis
stability of cnoidal waves with nodes since frequencies
oscillations of perturbation amplitudedq0 coincide for per-
turbationA2(h) that is zero in the wave nodes and perturb
tion F2(h) that is nonzero in the wave nodes.

V. CONCLUSION

We analyzed the stability of periodic cnoidal waves
cn-, dn-, and sn-types. It was shown that dn- and cn-wa
are unstable, whereas sn-wave isstablewith respect to the

FIG. 7. ~a! Areas of existence of limited perturbations for s
wave in the case of purely imaginary incrementd. ul1u51 in the
area below line with circles, whereasul2u51 everywhere.~b!
shows the profile of sn-wave form50.95. Rows~c! and ~d! show
the profiles of perturbations obtained from linear combinations
Im(d)50.7808 and Im(d)50.374 25, respectively. For perturbation
shown in rows~c! and ~d!, localization parameterm50.95.
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small perturbations of input profiles. The width of instabili
area for dn-wave decreases whenm→1 and in the limit of
strong localization when dn-wave transforms into the set
localized bright solitons, it becomes stable. Instability of c
wave is suppressed form→0 andm→1. We showed that the
linearization technique is applicable for the analysis of s
bility of waves with nodes. The method of analysis of stab
ity of periodic waves developed here is based on the c
struction of Cauchy matrix for perturbation vector an
calculation of eigenvalues of this matrix. It enables one
formulate the criteria of existence of limited perturbatio
for a given increment value and hence to make a conclus
about stability or instability of the corresponding cnoid
waves. This method can be readily applied for the investi
tion of stability of multicomponent and multicolo
(111)-dimensional cnoidal waves, as well as f
(211)-dimensional waves.
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APPENDIX A

In this appendix we show that equality Tr@J(h,h8)#
5Tr@J21(h,h8)# holds for all values of coordinatesh and

r

FIG. 8. Row~a! shows the evolution of perturbation of sn-wav
depicted in row~c! of Fig. 7 and corresponding to the imagina
increment Im(d)50.7808. Row~b! shows the evolution of pertur
bation of sn-wave that was used for the construction of perturba
depicted in row~c! of Fig. 7. Localization parameterm50.95. Two-
dimensional plots show the dependence of perturbation ampli
on the propagation distance.
3-9
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h8. It can be easily shown that inverse matrixJ21(h,h8)
satisfies the equation ]J21(h,h8)/]h5
2J 21(h,h8)B(h), since matrix J(h,h8) satisfies the
equation]J(h,h8)/]h5B(h)J(h,h8). Analogously to ex-
pression~11!, a general expression for the inverse Cauc
matrix can be written in the form of ‘‘matrizant:’’

J 21~h,h8!5E1 (
k51

`

~21!kE
h8

h
dh1E

h8

h1
dh2¯

3E
h8

hk21
dhkB~hk!B~hk21!¯B~h1!.

~A1!

Here E is a 434 unity matrix. Note the inverse order o
arguments of matricesB(hk) under the integral signs in ex
pression~A1! in comparison with expression~11!. Consider-
ing traces of matricesJ(h,h8) andJ 21(h,h8), one gets

Tr@J~h,h8!#541 (
k51

` E
h8

h
dh1E

h8

h1
dh2¯E

h8

hk21
dhk

3Tr@B~h1!B~h2!¯B~hk!#,
~A2!

Tr@J 21~h,h8!#541 (
k51

`

~21!kE
h8

h
dh1E

h8

h1
dh2¯

3E
h8

hk21
dhkTr@B~hk!B~hk21!¯B~h1!#.

It is well known that Tr@B(h1)B(h2)¯B(hk)#
5Tr@BT(hk)BT(hk21)¯BT(h1)#. It can be checked by di
rect substitution that matrixBT(h)5K21B(h)K, where ma-
trix K is given by

K5S O I
I OD , I5S 1 0

0 21D . ~A3!

This fact enables us to conclude that

Tr@B~h1!B~h2!¯B~hk!#5Tr@B~hk!B~hk21!¯B~h1!#.
ch

.

-

.

03661
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Moreover, simple analysis shows that

Tr@B~h1!B~h2!¯B~h2n11!#50,
~A4!

Tr@B~h1!B~h2!¯B~h2n!#5Tr@N~h1!N~h3!¯N~h2n21!

1N~h2!N~h4!¯N~h2n!#,

where matrixN~h! is introduced in Eq.~9!. One can see
from expressions~A4! that in the formulas~A2! elements of
the sums corresponding to odd values ofk are zero, whereas
elements corresponding to even values ofk coincide, since
(21)2n51. Thus one can readily conclude th
Tr@J(h,h8)#5Tr@J 21(h,h8)# for arbitraryh andh8.

APPENDIX B

In this appendix we present the whole system of ei
equations whose compatibility condition is Eq.~16!. The first
four are given by Newton’s formulas~15!:

p152T1 ,

p252 1
2 ~T1p11T2!,

~B1!
p352 1

3 ~T1p21T2p11T3!,

p452 1
4 ~T1p31T2p21T3p11T4!.

Next four equations are obtained by multiplication of equ
tion D(P)5O by P2k, calculation of traces of resulting ma
trix equations, and using propertiesTk5T2k :

T31p1T21p2T114p31p4T150,

T21p1T114p21p3T11p4T250,
~B2!

T114p11p2T11p3T21p4T350,

41p1T11p2T21p3T31p4T450.

The compatibility conditions for these two systems of equ
tions are given by Eq.~16!.
.
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